Bibliography

[Ruehle:2009.a]
  1. Rühle, C. Junghans, A. Lukyanov, K. Kremer, and D. Andrienko, Versatile Object-oriented Toolkit for Coarse-graining Applications, J. Chem. Theor. Comp., 2009, 5(12):3211-3223, https://dx.doi.org/10.1021/ct900369w

[Lyubartsev:1995]
    1. Lyubartsev, and A. Laaksonen, Calculation Of Effective Interaction Potentials From Radial-Distribution Functions - A Reverse Monte-Carlo Approach, Phys. Rev. E, 52(4):3730–3737, 1995, https://doi.org/10.1103/PhysRevE.52.3730

[Tschoep:1998]
  1. Tschöp, K. Kremer, J. Batoulis, T. Burger, and O. Hahn, Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates, Acta Polymerica, 49:61–74, 1998, https://doi.org/10.1002/(SICI)1521-4044(199802)49:2/3%3C61::AID-APOL61%3E3.0.CO;2-V

[Reith:2003]
  1. Reith, M. Pütz, and F. Müller-Plathe, Deriving effective mesoscale potentials from atomistic simulations, J. Comp. Chem., 24(13):1624–1636, 2003, https://dx.doi.org/10.1002/jcc.10307

[Izvekov:2005]
  1. Izvekov, and G. A. Voth, Multiscale coarse graining of liquid-state systems, J. Chem. Phys., 123(13):134105, 2005, https://dx.doi.org/10.1063/1.2038787

[Noid:2008.1]
    1. Noid, J. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das, and H. C. Andersen, The multiscale coarse graining method. 1. A rigorous bridge between atomistic and coarse-grained models, J. Chem. Phys., 128:244114, 2008, https://doi.org/10.1063/1.2938860

[gromacs4]
  1. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation., J. Chem. Theo. Comp., 4(3):435–447, 2008, https://dx.doi.org/10.1021/ct700301q

[Murtola:2007]
  1. Murtola, E. Falck, M. Karttunen, and I. Vattulainen, Coarse-grained model for phospholipid/cholesterol bilayer employing inverse Monte Carlo with thermodynamic constraints, J. Chem. Phys., 126(7):075101, 2007, https://dx.doi.org/10.1063/1.2646614

[Wang:2009]
  1. Wang, C. Junghans, and K. Kremer, Comparative atomistic and coarse-grained study of water: What do we lose by coarse-graining?, Eur. Phys. J. E, 28(2):221–229, 2009, https://dx.doi.org/10.1140/epje/i2008-10413-5

[Fritz:2009]
  1. Fritz, V. A. Harmandaris, K. Kremer, and N. F. A. van der Vegt, Coarse-Grained Polymer Melts Based on Isolated Atomistic Chains: Simulation of Polystyrene of Different Tacticities, Macromolecules, 42(19):7579-7588, 2009, https://doi.org/10.1021/ma901242h

[Ganguly:2012]
  1. Ganguly, D. and Mukherji, C. Junghans, and N. F. A. van der Vegt, Kirkwood-Buff coarse-grained force fields for aqueous solutions, J. Chem. Theor. Comp., 8(5):1802-1807, 2012, https://dx.doi.org/10.1021/ct3000958

[ruhle2011hybrid]
  1. Rühle, and C. Junghans, Hybrid Approaches to Coarse-Graining using the VOTCA Package: Liquid Hexane, Macromolecular Theory and Simulations, 20(7):472–477, 2011, https://doi.org/10.1002/mats.201100011

[mashayakrelative]
    1. Mashayak, M. N. Jochum, K. Koschke, N. R. Aluru, V. Rühle, and C. Junghans, Relative entropy and optimization-driven coarse-graining methods in VOTCA, Plos One, 10(7):e131754, 2015, https://dx.doi.org/10.1371/journal.pone.0131754

[Shell2008]
    1. Shell, The relative entropy is fundamental to multiscale and inverse thermodynamic problems., J. Chem. Phys., 129:144108, 2008, https://doi.org/10.1063/1.2992060

[Wu2005]
  1. Wu, and D. A. Kofke, Phase-space overlap measures. I. Fail-safe bias detection in free energies calculated by molecular simulation., J. Chem. Phys., 123:054103, 2005, https://doi.org/10.1063/1.1992483

[rudzinski_coarse-graining_2011]
    1. Rudzinski, and W. G. Noid, Coarse-graining entropy, forces, and structures, J. Chem. Phys., 135:214101, 2011, https://doi.org/10.1063/1.3663709

[Chaimovich2011]
  1. Chaimovich, and M. S. Shell, Coarse-graining errors and numerical optimization using a relative entropy framework, J. Chem. Phys., 134:094112, 2011, https://doi.org/10.1063/1.3557038

[lyubartsev2010systematic]
  1. Lyubartsev, A. Mirzoev, L.J. Chen, and A. Laaksonen, Systematic coarse-graining of molecular models by the Newton inversion method, Faraday discussions, 144:43–56, 2010, https://doi.org/10.1039/B901511F

[lu_coarse-graining_2014]
  1. Lu, Y. and Qiu, R. Baron, and V. Molinero, Coarse-Graining of {TIP}4P/2005, {TIP}4P-Ew, {SPC}/E, and {TIP}3P to Monatomic Anisotropic Water Models Using Relative Entropy Minimization, J. Chem. Theor. Comp., 10:4104–4120, 2014, https://doi.org/10.1021/ct500487h

[deOliveira:2016]
    1. de Oliveira, P. A. Netz, K. Kremer, C. Junghans, and D. Mukherji, C–IBI: Targeting cumulative coordination within an iterative protocol to derive coarse-grained models of (multi-component) complex fluids, J. Chem. Phys., 144:174106, 2016, https://doi.org/10.1063/1.4947253

[Rosenberger:2016]
  1. Rosenberger, M. Hanke, N. F. A. van der Vegt, Comparison of iterative inverse coarse-graining methods, Eur. Phys. J. Special Topics 225, 1323-1345, 2016, https://doi.org/10.1140/epjst/e2016-60120-1

[Kirkwood:1951]
    1. Kirkwood, and F. P. Buff, The Statistical Mechanical Theory of Solutions. I, J. Chem. Phys., 19(6):774–777, 1951, https://doi.org/10.1063/1.1748352

[Delbary:2020]
  1. Delbary, M. Hanke and D. Ivanizki, A generalized Newton iteration for computing the solution of the inverse Henderson problem, Inverse Probl. Sci. Eng., 28(8):1166-1190 2020, https://dx.doi.org/10.1080/17415977.2019.1710504

[Bernhardt:2021]
    1. Bernhardt, M. Hanke and N. F. A. van der Vegt, Iterative integral equation methods for structural coarse-graining, J. Chem. Phys., 154:084118, 2021, https://dx.doi.org/10.1063/5.0038633

[lammps]
    1. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in ‘t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott amd S. J. Plimpton, LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comp. Phys. Comm., 271:108171, 2022, https://doi.org/10.1016/j.cpc.2021.108171

[stillinger_computer_1985]
    1. Stillinger, and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 31(8):5262, 1985, https://doi.org/10.1103/PhysRevB.31.5262

[scherer_understanding_2018]
  1. Scherer, and D. Andrienko, Understanding three-body contributions to coarse-grained force fields, Phys. Chem. Chem. Phys, 20(34):22387–22394, 2018, http://xlink.rsc.org/?DOI=C8CP00746B